ASAL SEM-III-03

Department of Physics, C.M. Dubey Post Graduate College, Bilaspur (C. G.)
This is a Combined test of Quantum Mechanics, Statistical Mechanics and Condensed Matter Physics-I of the course which are taught in M.Sc. III Semester.

1. In adiabatic approximation, if the system is in nth state initially $\left(H_{n}\right)$ then after time t, it will be found in (1 point)
$\mathrm{n}^{\text {th }}$ state of $H_{n}{ }^{\prime}$ (new Hamiltonian)
$\mathrm{O}^{\text {th }}$ state of $\left(H_{n}{ }^{\prime}-H_{n}\right)$
$\mathrm{n}^{\text {th }}$ state of $\left(H_{n}{ }^{\prime}+H_{n}\right)$
$\mathrm{O}^{\text {th }}$ state of H_{n}
2. A thermodynamic system is one which may interact with its surrounding in at least two distinct ways and one of these necessarily is a transfer of heatFalse
OTrue
3. In Balmer series of hydrogen spectra, ω_{24} represents transitionsfrom 3rd excited state to 2 nd excited statefrom 4th excited state to 2 nd excited state
from 3rd excited state to 1 st excited statefrom 2nd excited state to 4th excited state
4. Total no. of transition due to constant perturbation isoneinfiniteDependent on energy gap between two states
zero
5. A system is said to be in thermodynamic equilibrium if state does not change in the following waysThermalChemicalMechanical
All of the above
6. How many Bravais lattice in two dimension?

53214
7. Fermi golden rule representsno transitionmaximum no. of transitiontransition only
Otransition rate
8. In the first order time dependent perturbation, the transition probability is proportional to

○ $1 / \omega$$1 / \omega^{2}$
Ot
$\bigcirc \mathrm{t}^{2}$
9. The interplanner spacing of (220) planes of a FCC structure is $1.7458 \AA$. Calculate the lattice constant.$2.458 \AA$$5.125 \AA$

- $4.983 \AA$
$\bigcirc 0$

10. The coordination number of HCP structure is

O 6

- 12
8

11. The variation of transition probability with transition frequency isa straight linean exponentially increasing function
an even functionan odd function
12. Match each statement with the correct option

2 A path dependent workdone
5 Entropy
1 Isothermal expansion of a gas
4 Internal energy

1. Irreversible process
2. is not Perfect differential
3. Reversible process
4. is a Perfect differential
5. Macroscopic parameter
6. If the conditions for any of the three type of equilibrium are satisfied then the system is in non thermodynamic equilibrium

True
\bigcirc False
14. NaCl is face centered cubic lattice structure. How many Na atoms are in a unit cell?
$\bigcirc 3$
4
15. The number of lattice points in a primitive cell is
$\bigcirc 4$
1
16. For a adiabatic process the first law of thermodynamics becomes $\mathbf{d U}=\mathbf{- P d V}$
\bigcirc False
True
17. X-rays have larger wavelengths than which of the following?
\bigcirc Visisble light
O Beta rays
O Microwave
Gamma rays
18. If n distinguisible particle are distributed in two identical boxes then the propbability of (r,n-r) state is (1 point) given by
$\bigcirc^{n} \mathrm{C}_{\mathrm{r}} 2^{\mathrm{n}}$
$\bigcirc 2^{n}{ }^{n} \mathrm{n}_{\mathrm{r}}$
${ }^{n} C_{r} / 2{ }^{n}$

19. In the thermodynamic limit that the properties that become directly proportional to the size of system are called

Extensive propertiesMicroscopic propertiesIntensive properties

Macroscopic properties
20. What in the relation between lattice constant (a) and lattice density p ?
$(\mathrm{nM} / \mathrm{N} p)^{1 / 3}$
$\left.O_{(n p / N M}\right)^{1 / 3}$
$\mathrm{O}_{(\mathrm{nN} / \mathrm{M} p)^{1 / 3}}$
$\left.\mathrm{O}_{(\mathrm{M} p / \mathrm{nN})}\right)^{1 / 3}$
21. The working of LASER is based on the phenomena of
\bigcirc stimulated absorption
stimulated emission
O spontaneous emission
22. Who is the founder of the Ensemble theory?BoltzmannMaxwell
GibbsEinstein
23. Which of the following is an amorphous material?RubberLead

- GlassMica

24. A system of N particles has only two allowed states A and B. the probability foe A is P and for B is 1-P. (1 point) What is the probability for the system to be in the macrostate ($\mathrm{r}, \mathrm{N}-\mathrm{r}$)

O!/r! (N-r)!
$\bigcirc \mathrm{N}_{\mathrm{C}} / 2^{\mathrm{N}}$
${ }^{\mathrm{N}} \mathrm{Cr} \mathrm{P}^{\mathrm{r}}(1-\mathrm{P}){ }^{\mathrm{N}-\mathrm{r}}$
O None of these
25. What is the atomic packing fraction of $\mathrm{FCC}, \mathrm{BCC}$ and SC structure respectively?$0.52,0.68,0.74$$0.68,0.74,0.52$
0.74, 0.68, 0.52$0.72,0.54,0.67$
26. What is the lattice constant for FCC crystal having atomic radius $1.476 \AA$?
$\bigcirc 4.1748 \AA$
$1.476 \AA$
$\bigcirc 0$
27. In stimulated emission of radiation, no. of photon(s) emitted is

O zeroone
two
\bigcirc three
28. Einstein's coefficients of stimulated emission and induced absorption are \qquad
of zero valuedependent on room temperature

- equal

Onot equal
29. How many bravais lattice are there in three dimension?

14
$\bigcirc 5$
$\bigcirc 239$
30. The crystal structure of Al is \qquad .

Oclosed packed structuresimple cube
face centredBody centred
31. Effective no. of lattice points in unit cell of SC, BCC and FCC structures are

O2, 4,4$1,2,2$$2,3,4$
$1,2,4$
32. To describe the initial state of a system, the order of perturbation required isthird
zerosecondfirst
33. Time dependent perturbation theory was developed byEinsteinMaxwell

- DiracSchrodinger

34. Minimum interplanar spacing required for Bragg's diffraction is \qquad
$\bigcirc \lambda$
$\bigcirc 2 \lambda$
○ $\lambda / 2$$\lambda / 4$
35. The parameter of the order of atomic level is called
microscopic
36. Degree of Freedom of diatomic molecules at high temperature isNone of these
37. Einstein's coefficients of spontaneous emission is related to light velocity as proportional to \qquad (1 point)
$1 / \mathrm{c}^{3}$
$\bigcirc c^{3}$1/c
$\bigcirc_{1 / c^{2}}$
38. For a isochoric process the first law of thermodynamics becomes $\mathbf{d Q}=\mathbf{d U}$
\bigcirc False
OTrue
39. For a cyclic process the first law of thermodynamics becomes $\mathbf{d Q}=\mathbf{d W}$

Truefalse
40. In harmonic perturbation, emission of photon is represented by
$\bigcirc e^{-i \omega t}-e^{i \omega t}$
$\bigcirc e^{-i \omega t}$
$\mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$
$\left.\bigcirc_{2\left(\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}-\mathrm{e}\right.} \mathrm{i} \omega \mathrm{t}\right)$

TESTMOZ ASSESSMENT SHEET

ASAL SEM-III-03

Thank you for appearing in the test. We hope to see you soon in the next test
Your score: 58\% 23.25 / 40
Duration: 0:48:52

Congratulations!

You have successfully passed the test.

1. A system is said to be in thermodynamic equilibrium if state does not change in the following ways

Your Answer: CorrectThermalChemicalMechanical
\checkmark All of the above
2. If the conditions for any of the three type of equilibrium are satisfied then the system is in non thermodynamic equilibrium

Your Answer: X Incorrect
\checkmark 〇 True
x False
3. A thermodynamic system is one which may interact with its surrounding in at least two distinct ways and one of these necessarily is a transfer of heat

Your Answer: \qquad CorrectFalse
\checkmark True
4. The parameter of the order of atomic level is called \qquad

Your Answer: X Incorrect

Sita parameters
Correct Answer:
microscopic
5. Who is the founder of the Ensemble theory?

Your Answer: Correct
O MaxwellBoltzmannEinstein
Gibbs
6. Match each statement with the correct option

Your Answer: Partially correct
x
$4 \vee \rightarrow 3$ A path dependent workdone

1. is a Perfect differential
$5 \vee$ Isothermal expansion of a gas
2. Macroscopic parameter
$x 2 v \rightarrow 1$ Internal energy
3. is not Perfect differential
4. Reversible process
5. Irreversible process
6. Degree of Freedom of diatomic molecules at high temperature is

Your Answer: Correct
$\bigcirc 3$
\bigcirc_{5}
\checkmark ○ 6
None of these
8. If n distinguisible particle are distributed in two identical boxes then the propbability of ($r, n-r$) state is given by

Your Answer: \downarrow Correct
${ }^{\circ} \mathrm{n}_{\mathrm{r}}$
$O_{n}{ }^{n} C_{r} 2^{n}$
$\mathrm{O}_{2}{ }^{\mathrm{n}} / \mathrm{n} \mathrm{C}_{r}$
○
${ }^{n} \mathrm{C}_{\mathrm{r}} / 2{ }^{\mathrm{n}}$
9. For a cyclic process the first law of thermodynamics becomes $\mathbf{d Q}=\mathbf{d W}$

Your Answer: \downarrow Correct
\checkmark True
Ofalse
10. For a isochoric process the first law of thermodynamics becomes $\mathbf{d Q}=\mathbf{d U}$

Your Answer: \qquadFalse

- True

11. For a adiabatic process the first law of thermodynamics becomes $\mathbf{d U}=-\mathbf{P d V}$

Your Answer:
 Correct

OFalse
O True
12. In the thermodynamic limit that the properties that become directly proportional to the size of system are called

Your Answer: \downarrow Correct
OIntensive properties
O Extensive properties
Microscopic propertiesMacroscopic properties
13. A system of N particles has only two allowed states A and B.the probability foe A is P and for B is $1-P$. What is the probability for the system to be in the macrostate ($\mathrm{r}, \mathrm{N}-\mathrm{r}$)

Your Answer: X Incorrect
On!/r! (N-r)!
$\boldsymbol{x} \bigcirc{ }^{N} C_{r} / 2^{N}$
$\checkmark{ }^{N} C r P^{r}(1-P)^{N-r}$
None of these
14. How many Bravais lattice in two dimension?

Your Answer: Correct

14
○ 5
32
$\bigcirc 7$
15. How many bravais lattice are there in three dimension?

Your Answer: Correct
$\bigcirc 5$
32
239
O 14
16. The number of lattice points in a primitive cell is
$0 / 1$ point

Your Answer: X Incorrect
O_{2}
$\bigcirc 3$
$\checkmark \bigcirc_{1}$
$\times \bigcirc 4$
17. NaCl is face centered cubic lattice structure. How many Na atoms are in a unit cell?

Your Answer: X Incorrect
○1
$\bigcirc 3$
$\bigcirc 4$
○ 6
18. The interplanner spacing of (220) planes of a FCC structure is $1.7458 \AA$. Calculate the lattice constant.

Your Answer: \mathbf{X} Incorrect
\checkmark - $4.983 \AA$
$x \bigcirc 2.458 \AA$
$\bigcirc 0$$5.125 \AA$
19. What is the lattice constant for FCC crystal having atomic radius $1.476 \AA$?

Your Answer: Correct

○ $1.476 \AA$
○ $4.1748 \AA$5.216 A
$\bigcirc 0$
20. What is the atomic packing fraction of FCC, BCC and SC structure respectively?

Your Answer: \mathbf{x} Incorrect
O.68, 0.74, 0.52
$x \bigcirc 0.52,0.68,0.74$
$\checkmark \bigcirc 0.74,0.68,0.52$
O.72, 0.54, 0.67
21. The coordination number of HCP structure is

Your Answer: Correct
○6
16

- 12

22. Which of the following is an amorphous material?

Your Answer: \downarrow Correct

OMica
○LeadRubber
Glass
23. The crystal structure of Al is \qquad .

Your Answer:
 \checkmark Correct

Body centredO face centred
Oclosed packed structure
simple cube
24. Effective no. of lattice points in unit cell of SC, BCC and FCC structures are

Your Answer: Correct
1, 2, 2
(1, 2, 4
2, 3, 4
$2,4,4$
25. Einstein's coefficients of stimulated emission and induced absorption are \qquad
x Onot equal
dependent on room temperature
of zero value
26. The variation of transition probability with transition frequency is

Your Answer: X Incorrect
\checkmark an even functionan odd functiona straight line
\times
an exponentially increasing function
27. Einstein's coefficients of spontaneous emission is related to light velocity as proportional to \qquad

Your Answer:
, Correct
○1
$1 / c^{2}$
$\bigcirc c^{3}$
($1 / c^{3}$
28. In Balmer series of hydrogen spectra, ω_{24} represents transitions \qquad

Your Answer: Correct

from 4th excited state to 2nd excited statefrom 3rd excited state to 2nd excited state
from 3rd excited state to 1st excited state
from 2nd excited state to 4th excited state
29. Time dependent perturbation theory was developed by

Your Answer: X Incorrect
Maxwell
$\checkmark \bigcirc D$ Dirac
\mathbf{x} ○ SchrodingerEinstein
30. Fermi golden rule represents

Your Answer: Correct
transition onlymaximum no. of transition
(transition rate
Ono transition
31. Total no. of transition due to constant perturbation is

Your Answer: X Incorrect
Ozero

* O Dependent on energy gap between two states

Oone
infinite
32. In the first order time dependent perturbation, the transition probability is proportional to

Your Answer: X Incorrect
\checkmark
Ot
$x \bigcirc t^{2}$$1 / \omega^{2}$
33. To describe the initial state of a system, the order of perturbation required is

Your Answer: X Incorrect
*
firstsecond
○zero
Othird
34. In stimulated emission of radiation, no. of photon(s) emitted is

Your Answer: Correct
Ozero
Oone
\checkmark two
Othree
35. The working of LASER is based on the phenomena of

Your Answer: Correct
\checkmark stimulated emission
〇stimulated absorptionspontaneous emission
36. In harmonic perturbation, emission of photon is represented by

Your Answer: X Incorrect
$\bigcirc e^{-i \omega t}$
$\checkmark e^{i \omega t}$
$x \bigcirc 2\left(e^{-i \omega t}-e^{i \omega t}\right)$
$\bigcirc e^{-i \omega t}-e^{i \omega t}$
37. In adiabatic approximation, if the system is in nth state initially $\left(\mathrm{H}_{\mathrm{n}}\right)$ then after time t , it will be found in \qquad 1 / 1 point

Your Answer:
 Correct

O $n^{\text {th }}$ state of $H_{n}{ }^{\prime}$ (new Hamiltonian)
On ${ }^{\text {th }}$ state of H_{n}
$n^{\text {th }}$ state of $\left(H_{n}{ }^{\prime}-H_{n}\right)$
On ${ }^{\text {th }}$ state of $\left(H_{n}{ }^{\prime}+H_{n}\right)$
38. What in the relation between lattice constant (a) and lattice density p ?

Your Answer: X Incorrect
$\checkmark(\mathrm{nM} / \mathrm{N} p)^{1 / 3}$
\boldsymbol{x} ○(np/NM) $)^{1 / 3}$
$(n N / M p)^{1 / 3}$
$(\mathrm{Mp} / \mathrm{nN})^{1 / 3}$
39. X-rays have larger wavelengths than which of the following ?
$0 / 1$ point

Your Answer: X Incorrect
\checkmark
Gamma raysBeta rays
Microwave
x
O Visisble light
40. Minimum interplanar spacing required for Bragg's diffraction is \qquad

Your Answer: Correct
$\bigcirc / 4$
○ $\lambda / 2$
$\bigcirc \lambda$
$\bigcirc 2 \lambda$

